Abstract

The general coupling matrix representation of bandpass filter (BPF) circuits is a widely used technique that has simplified the analysis and optimization of complex microwave filters. In this paper, we demonstrate a novel application of the general coupling matrix for modeling wireless power-transfer (WPT) systems based on the BPF model of magnetically coupled resonators. Compared to other methods of WPT analysis, our model simplifies accommodation of complex loads and provides direct expressions for impedance matching (IM) in WPT systems. Using this tool, we achieve optimal IM for two resonator systems with a complex load, thus achieving the greatest possible power-transfer efficiency (PTE). Furthermore, our model reveals additional design constraints for optimizing PTE in coupled resonator systems exhibiting low quality factor and small interresonator coupling. Overall, this paper introduces a new, versatile framework for the analysis and optimization of coupled resonator WPT systems. Experimental results are presented, verifying the optimal IM design process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.