Abstract

The gap between worst and typical case delays is bound to increase in nanometer scale technologies due to the spread in process manufacturing parameters. To still profit from scaling, designs should tolerate worst case delays seamlessly and with a minimum performance degradation with respect to the typical case. We present a simple RISC core which tolerates worst case extra latency using the Latency-Insensitive Design approach coupled to a Variable-Latency mechanism. Stalls caused by excessive delay, by data and control hazards and by late memory access are dealt with in a uniform way. Compared to a pure worst-case approach, our design method permits to increase the core clock frequency by 23% in a 45 nm CMOS technology, without area and power penalty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.