Abstract

Quantification of substances in biofluid samples (e.g., urine, blood, and cerebrospinal fluids) are useful for clinical diagnosis. In current study, a rapid and green strategy by coupling in-syringe kapok fiber-supported liquid-phase microextraction with flow-injection mass spectrometry was proposed. The natural kapok fiber was used as an oily extraction solvent (e.g., n-octanol) support material, and an in-syringe extraction device was conveniently constructed. The whole extraction processes, including sampling, washing and desorption, were conveniently conducted by simply pulling/pushing the syringe plunger, enabling rapid analyte enrichment and sample purification. The follow-up flow injection-mass spectrometry detection enabled rapid and high throughput analysis. As an example, the proposed method was applied to analyze antidepressants in plasma/urine, showing satisfied linearities (R2 ≥0.993) in ranges of 0.2–1000 ng/mL. By employing the in-syringe extraction method prior to flow injection-mass spectrometry detection, the LOQs in plasma and urine were reduced by 25–80 folds and 5–25 folds, respectively. Besides, by employing ethanol and 80% ethanol as the desorption solvent and carrier solvent, respectively, the analytical method showed excellent greenness. In general, the integrated method provides a promising choice for rapid and green biofluid analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call