Abstract

Homoacetogenesis is an important potential hydrogen sink in acetogenesis, in which hydrogen is used to reduce carbon dioxide to acetate. So far the acetate production from homoacetogenesis, especially its kinetics, has not been given sufficient attention. In this work, enhanced production of acetate from anaerobic conversion of glucose through coupling glucose fermentation and homoacetogenesis is investigated with both experimental and mathematical approaches. Experiments are conducted to explore elevated acetate production in a coupled anaerobic system. Acetate production could be achieved by homoacetogenesis with a relative high acetate yield under mixed fermentation conditions. With the experimental observations, a kinetic model is formulated to describe such a homoacetogenic process. The maximum homoacetogenic rate (k(m,homo)) is estimated to be 28.5 ± 1.7 kg COD kg⁻¹ COD day⁻¹ with an uptake affinity constant of 3.7 × 10⁻⁵± 3.1 × 10⁻⁶kg COD m⁻³. The improved calculation of homoacetogenic kinetics by our approach could correct the underestimation of homoacetogenesis in anaerobic fermentation processes, as it often occurs in these systems supported by literature analysis. The model predictions match the experimental results in different cases well and provide insights into the dynamics of anaerobic glucose conversion and acetate production. Furthermore, acetate production via homoacetogenesis increases by about 40% through utilizing the fed-batch coupling system, attributed to a balance between the hydrogen production in the acetogenesis phase and the hydrogen consumption in the homoacetogenesis phase. This work provides an effective way for increased anaerobic acetate production, and gives us a better understanding about the homoacetogenic kinetics in the anaerobic fermentation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.