Abstract

Abstract The purpose of this study is to formulate a coupled fluid-flow/geomechanics model of a naturally fractured reservoir. Fluid flow is modeled within the context of dual-porosity (more generally, overlapping-continuum) concept while geomechanics is modeled following Biot's isothermal, linear poroelastic theory. The development follows along the line of the conventional and existing porous fluid-flow modeling. The commonly used systematic fluid-flow modeling is therefore preserved. We show how the conventional fluid-flow dual-porosity formulations are extended to a coupled fluid-flow/geomechanics model. Interpretation of the pore volumetric changes of the dual continua, fractures and matrix-blocks, and the associated effective stress laws are the most difficult and critical coupling considerations. New relations describing the dual rock volumetric changes are presented. These relations allow a smooth and consistent transition between single-porosity and dual-porosity concepts and are in terms of measurable quantities. Reduction to the single-porosity is presented to demonstrate the conceptual consistency of the proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.