Abstract

We present the design and implementation of a home-built point-to-plane corona discharge probe, which rapidly and efficiently charge reduces biological ions generated by electrospray ionization (ESI). The molecules analysed ranged from small peptides such as Glu-fibrinopeptide B (1.5 kDa), small proteins such as myoglobin (16.9 kDa), polymers such as polyethylene glycol (PEG 10 k) which all showed intense singly charged ions; to large native multiprotein complexes such as GroEL (802 kDa) which show a broad range of charge-reduced species. The corona discharge probe operates at atmospheric pressure and was directly interfaced with a standard-ESI or nanoflow-ESI source of quadrupole ion mobility time-of-flight mass spectrometer. The corona discharge probe is completely modular and could potentially be mounted to any commercial or research grade mass spectrometer with an ESI source. The level of charge reduction is precisely controlled by the applied voltage and/or probe gas flow rate and when in operation, results in approximately a 50 % reduction in total ion current. We also present the combination of corona discharge and travelling wave ion mobility and assign helium collision cross-section values (ΩHe) to the charge reduced species of the native protein complex pyruvate kinase. It would appear that the ΩHe of the +20 charge state for pyruvate kinase is approximately 20 % smaller than the +35 charge state. Finally, we discuss the potential benefits and concerns of utilising charge reduced protein species as a means of extending the travelling wave collision cross-section calibration range over that which is already published.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call