Abstract
The efficient polymeric semiconducting photocatalyst for solar-driven sluggish kinetics with multielectron transfer oxygen evolution has spurred scientific interest. However, existing photocatalysts limited by π-conjugations, visible-light harvest, and charge transfer often compromise the O2 production rate. Herein, we introduced an alternative strategy involving a boranil functionalized-based fully π-conjugated ordered donor and acceptor (D-A) covalent organic frameworks (Ni-TAPP-COF-BF2 ) photocatalyst. The co-catalyst-free Ni-TAPP-COF-BF2 exhibits an excellent ~11-fold photocatalytic water oxidation rate, reaching 1404 μmol g-1 h-1 under visible light irradiation compared to pristine Ni-TAPP-COF (123 μmol g-1 h-1 ) alone and surpasses to reported organic frameworks counterpart. Both experimental and theoretical results demonstrate that the push/pull mechanism (metalloporphyrin/BF2 ) is responsible for the appropriate light-harvesting properties and extending π-conjugation through chelating BF2 moieties. This strategy benefits in narrowing band structure, improving photo-induced charge separation, and prolonged charge recombination. Further, the lower spin magnetic moment of M-TAPP-COF-BF2 and the closer d-band center of metal sites toward the Fermi level lead to a lower energy barrier for *O intermediate. Reveal the potential of the functionalization strategy and opens up an alternative approach for engineering future photocatalysts in energy conversion applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.