Abstract

The growth of a prolate or oblate elliptic micro-void in a fiber reinforced anisotropic incompressible hyper-elastic rectangular thin plate subjected to uniaxial extensions is studied within the framework of finite elasticity. Coupling effects of void shape and void size on the growth of the void are paid special attention to. The deformation function of the plate with an isolated elliptic void is given, which is expressed by two parameters to solve the differential equation. The solution is approximately obtained from the minimum potential energy principle. Deformation curves for the void with a wide range of void aspect ratios and the stress distributions on the surface of the void have been obtained by numerical computation. The growth behavior of the void and the characteristics of stress distributions on the surface of the void are captured. The combined effects of void size and void shape on the growth of the void in the thin plate are discussed. The maximum stresses for the void with different sizes and different void aspect ratios are compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.