Abstract

The coupling effects of venting and CO2inerting on stoichiometric methane-air mixture explosions were investigated in an isolated vessel and interconnected vessels. The results indicate that venting mitigates the explosion intensity, especially for small vessels. For vessels connected by pipes, a venting design following EN 14994 (2007) and NFPA 68 (2013) could not meet the venting requirements. For an isolated big vessel and interconnected vessels, increasing the CO2 volume fraction (Φ) from 0 to 15.0 vol% decreased the maximum explosion overpressure (Pmax) and maximum rate of overpressure rise ((dP/dt)max) and delayed tmax. For closed interconnected vessels, Pmax varied approximately linearly with Φ. For both isolated vessel and interconnected vessels, the coupling effects of venting and CO2 inerting on methane-air explosion were more efficient than those of individual mitigative method (that is, venting alone or CO2 inerting alone).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.