Abstract

Quasi one-dimensional materials made from carbon have attracted a lot of attention because of their interesting properties and potential applications in electronic devices. Recently, new kinds of carbon allotropes named as penta-graphene nanoribbons (P-GNRs) have been proposed. By implementing first-principles calculations, P-GNRs exhibit large tunable band gaps under bending stress, and the band gaps of P-GNRs are easier to control than those of GNRs. In addition, the order of spin moments of P-GNRs can transform from ferromagnetic to antiferromagnetic under the coupling effect of the electric field and bending strain, thus resulting in a significant change of magnetism. Therefore, the diverse electronic and magnetic properties highlight the potential applications of P-GNRs in flexible displays, wearable computation electronics and digital memory devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.