Abstract

The lithiation of silicon (Si) involves the evolution of reaction front, self-limiting lithiation, and visco-plastic deformation. During the lithiation of crystalline Si, solid-state amorphization occurs to lower Gibbs free energy, and lithiated Si-electrode in lithium-ion battery is mainly present in amorphous phase. In this work, we develop a viscoplastic constitutive relationship for the lithiation-induced deformation of amorphous materials from the theory of free volume, and establish a chemo-mechanical model for the lithiation-induced deformation of a-Si electrode from the frameworks of phase-field theory, stress-assisted thermal activation process and the viscoplastic constitutive relationship. The chemo-mechanical model takes into account three important chemophysical phenomena of the self-limiting lithiation, evolution of reaction front/interphase zone and plastic flow. Using the newly developed chemo-mechanical model, we investigate the lithiation-induced deformation of an a-Si nanowire. The numerical results reveal that both the stress-assisted thermal activation process and plastic flow retard the motion of the reaction front from free surface to the center of the a-Si nanowire. The annihilation and creation of free volume significantly reduces the Cauchy stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.