Abstract

Currently, the most prevalent surgical treatment method is laparoscopic surgery. Robotic surgery has many advantages over laparoscopic surgery. Therefore, robotic surgery technology is currently constantly evolving. The advantages of robotic surgery are that it can minimize incision, bleeding, and sequelae. Other advantages of robotic surgery are that it can reduce hospitalization, recovery period, and side effects. The appeal of robotic surgery is that it requires fewer surgical personnel compared to laparoscopic surgery. This paper proposes an ultra-compact 7-axis vertical multi-joint robot that employs the wire-driven method for minimally invasive surgery. The proposed robot analyzes the degree of freedom and motion coupling for control. The robot joint is composed of a total of seven joints, and among them, the 7-axis joint operates the forceps. At this time, the forceps joint (#7 axis) can only operate open and close functions, while the link is bent and rotatable, regardless of position change. This phenomenon can be analyzed by Forward Kinematics. Also, when the DOF rotates, the passing wires become twisted, and the wire is generated through length change and coupling phenomenon. The maximum rotation angle of DOF is 90° and the rotating passing wire is wound by the rotation of the wire pulley. If the DOF is rotated to the full range of 120°, the second DOF will be rotated to 90°, and at this time, the coupling phenomenon caused by the first DOF rotation can be eliminated. The length change and the robot joint angle change related to the motor drive, based on the surgical robot control using the wire-driven method, are correlated, and the values for the position and direction of the end effector of the robot can be obtained through a forward kinematic analysis. The coupling problem occurring in the wire connecting the robot driving part can be solved through a kinematic analysis. Therefore, it was possible to test the position of the slave robot and the performance of the surgical forceps movement using the master system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.