Abstract

The focus of the present study was on the applicability of superfine zeolite (SZ) and polypropylene fibers in improving the geo-environmental parameters as well as the durability of cement-based stabilized/solidified low plasticity clay containing different dosages of Pb. The leaching data revealed that while adding a low range (≤ 7.5%) of sole cement even in the severely polluted soils could fully eliminate the Pb bioavailability, the metal retention capacity might portray a marked sensitivity to the acid-washing process. A major reduction was also observed in the mechanical/leaching performance of those samples after undergoing the wetting-drying (w-d) cycle, especially at a high proportion of Pb, which could weaken the cementation bonding dramatically; hence, much more cement was needed to pass the required stabilization/solidification (S/S) standards. Besides, the micro level tests indicated that the application of SZ (with 25% cement replacement) would alleviate the Pb declining impact on the S/S reactions and modify the porous network of soil. As a result, the specimens amended by cement-SZ (CSZ) were more functional (~ 1.4 times) in immobilizing the toxic ions than the cement alone was. However, the CSZ admixture might not perfectly restrain the w-d forces/deteriorations. Such a potential drawback was found to be solvable by the insertion of fiber, in which case, an enhancement in the ductility and the metal capsulation could be also manifested. In fact, the CSZ/fiber treatment could form a well-intertwined matrix, showing high success rates in stabilizing/solidifying the contaminated soils alongside a significant decrease (~ 2-folds) in the quantity of needed amount of cement to give the S/S satisfactory operation under the harsh environmental conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call