Abstract

Current practice in seismic design of flexible liquid-filled systems is reviewed. A coupled fluid-structure finite element method which considers the sloshing effect is developed for the seismic analysis of liquid-filled systems of various geometries with and without internal components. An analysis of the dynamic interaction between the structural vibration and liquid sloshing is also presented. Both rigid and flexible fluid-tank systems of different configurations are considered. Results demonstrate that tank flexibility can affect the amplitude of the free surface wave and hence the sloshing pressure and structural response. This result is consistent with the perturbation analysis. The dynamic interaction depends on (1) the ratio of natural frequency between fluid sloshing and the fluid-tank system and (2) the ratio of the effective areas of the fluid-structure interface and free surface of the fluid. Hence it is expected that in analyzing tanks with flexible internal components, this coupling effect can be more pronounced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.