Abstract

Understanding the functionality of the modification layer in regulating the charge transfer process at the semiconductor/electrolyte interface is of great significance to the rational design of photoelectrocatalytic water oxidation systems. Herein, by systematically investigating and comparing the charge transfer kinetics behaviors over ferrihydrite (Fh)- and cobalt phosphate (CoPi)-modified hematite (Fe2O3) photoanodes, we unveiled the essential relation between photocurrent enhancement and the charge transfer process. With the hole-storage material Fh as a reference, it was found that CoPi demonstrates high hole-storage capacity at a low bias region (<1.0 V vs. RHE) due to the effective release of Fermi level pinning. Afterwards, the stored holes would be timely injected into the electrolyte for water oxidation, caused by the enhanced charge separation in the presence of CoPi. In contrast, the decoration of Fh can only slightly passivate the surface states and promote hole injection in the high potential region. Subsequently, superior hole-storage capacity in the low-potential region is recognized as a crucial factor for photocurrent enhancement. These combined results provide new insights into the understanding of interfacial charge transfer kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.