Abstract
Discontinuous Galerkin (DG) and mixed finite element (MFE) methods are two popular methods that possess local mass conservation. In this paper we investigate DG-DG and DG-MFE domain decomposition couplings using mortar finite elements to impose weak continuity of fluxes and pressures on the interface. The subdomain grids need not match, and the mortar grid may be much coarser, giving a two-scale method. Convergence results in terms of the fine subdomain scale $h$ and the coarse mortar scale $H$ are established for both types of couplings. In addition, a nonoverlapping parallel domain decomposition algorithm is developed, which reduces the coupled system to an interface mortar problem. The properties of the interface operator are analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.