Abstract

A series of HZSM-5 catalysts were synthesized by different methods. The physicochemical properties of the HZSM-5 catalysts were characterized by XRD, SEM, N2 isothermal adsorption-desorption, NH3-TPD, Py-IR and TGA, respectively. The results indicated that different preparation conditions lead to different morphologies, textures and the distribution of acid sites. The nanosized HZSM-5 catalysts exhibited better catalytic reactivity and coke capacity than the micro-sized HZSM-5 because nanosized HZSM-5 had larger specific surface area, higher pore volume, more exposed channels and more accessible acid sites. The large particles of NZ-3 in a reasonable range and the smooth surface were conducive to product diffusion; therefore, NZ-3 exhibited higher specific propylene yield and stability than the other nanosized catalysts. The moderate density and distribution of acid sites on NZ-3 also favored the formation of propylene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call