Abstract

Self-consistent circuit solution of Z-pinch driver discharging and wire array implosion is realized via Pspice analog behavioral modeling (ABM) based on the 0-dimensional implosion model. The influence of wire array and circuit parameters on implosion process is investigated using the method. Results show that wire array as its load is strongly coupled with Z-pinch driver. The maximum pinch current, the implosion time and the maximum kinetic energy (Ek) transferring to wire array are very sensitive to driver and wire array parameters. When the driver doesnot change and implosion time doesnot exceed a quarter of oscillation periods, the maximum pinch current, the implosion time and the maximum Ek increase while wire array mass increasing, and implosion time decreases as initial wire array radius increases. With keeping wire array unchanged, the implosion time decreases and implosion time increases as capacitance of driver increases, but the Ek efficiency firstly increases then decreases. The optimal array parameters for a given driver should make the implosion fully use the rising edge of current pulse, and make the pinch time close to a quarter of oscillation period, so that the implosion process could obtain maximum Ek efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.