Abstract

A new concept of lower hybrid antenna for current drive has been proposed for ITER (Bibet et al 1995 Nucl. Fusion 35 1213–23): the passive active multijunction (PAM) antenna that relies on a periodic combination of active and passive waveguides. An actively cooled PAM antenna at 3.7 GHz has recently been installed on the tokamak Tore Supra. This paper summarizes the comprehensive experimental characterization of the coupling properties of the PAM antenna to the Tore Supra plasmas. In this paper, the electromagnetic properties of the antenna are measured at a reduced power (<1 MW) to allow a systematic comparison with linear wave coupling theory and the associated modelling based on the linear ALOHA code. In a wide range of edge electron densities at the antenna aperture (spanning a factor 20 from 0.5 × nc to 10 × nc where nc is the slow wave density cut-off, nc = 1.7 × 1017 m−3 at 3.7 GHz) and antenna phasing, the ALOHA simulations reproduce the experimental results observed on Tore Supra. In addition, reduced power reflection coefficients (<5%) are measured at a low edge density, close to nc, i.e. in the range 0.5–3 × nc. Measurement and analysis with ALOHA of the antenna–plasma scattering matrices provide explanation of the good coupling properties of the PAM antenna close to nc by highlighting the crucial role of the slow wave intercoupling between active and passive waveguides through the plasma edge. This detailed validation of the coupling modelling is an important step towards the validation of the PAM concept in view of further optimizing the electromagnetic properties of the future ITER antenna.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.