Abstract
Carbon capture and utilization (CCU) is an essential method to sequester unavoidable CO2 emissions in regions with insufficient geological storage capacities. Nonetheless, there are several uncertainties and knowledge gaps in terms of the future value chains of some CCU technologies (e.g. carbonation). This paper analyzes the potentials of coupling CCU with the supply chains of the construction industry by means of carbonating the concrete products and waste concrete in the German federal state of North Rhine–Westphalia. Based on extensive data and statistical analyses, the locations and outputs of the concrete and recycling plants have been determined in order to quantify their CO2 sequestration capacities. Location-allocation models have been applied to allocate the carbon sources to the potential carbon sinks and calculate the minimum transportation costs.The analysis shows that the total annual sequestration capacity is up to 1 Mt CO2 with an average transportation distance of 37.4 km (8.3 EUR/ton). Nonetheless, some emission sources have a clear comparative advantage in terms of their proximity to the carbon sinks as the distance ranges between 0.7 km and 99.7 km. Also, some carbon sinks have a comparative advantage in terms of capacities and technology readiness levels. Therefore, the paper also presents models for the different products in order to display the potentials of each category separately and offer more flexibility to the stakeholders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.