Abstract
The efficiency of charge transfer in electrochemical devices is largely determined by the ion concentration profile near the electrode surface, i.e., the electrical double layer (EDL). Room temperature ionic liquids (RTILs) are attractive for electrochemical applications due to their high charge density as well as for their tunable anion/cation design, low vapor pressure, and wide electrochemical window. The EDL structure in RTILs is profoundly different from that in traditional (dilute) electrolytes in that opposite charges tend to layer in a spatially alternating, segregated structure that decays toward the bulk region. Such charge layering becomes crucial for applications that require confinement of RTILs into narrow spaces, where RTILs are interfaced with nanostructured electrodes. Layering in the EDL is frequently explained by electrostatic interactions of the ions with the electrode, assuming that RTILs are homogeneous liquids made of ions only. However, a growing evidence points to the presence of ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.