Abstract

The paper presents a generic computer model for estimating short-term steady-state fluxes of CO 2, water vapor, and heat from broad leaves and needle-leaved coniferous shoots of C 3 plant species. The model explicitly couples all major processes and feedbacks known to impact leaf biochemistry and biophysics including biochemical reactions, stomatal function, and leaf-boundary layer heat- and mass-transport mechanisms. The ability of the model to successfully predict measured photosynthesis and stomatal-conductance data as well as to simulate a variety of observed leaf responses is demonstrated. A model application investigating physiological and environmental regulation of leaf water-use efficiency (WUE) under steady-state conditions is discussed. Simulation results suggest that leaf physiology has a significant control over the environmental sensitivity of leaf WUE. The implementation of a highly efficient solution technique allows the model to be directly incorporated into plant-canopy and terrestrial ecosystem models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.