Abstract

Autonomic activity in neurological and psychiatric disorders is often dysregulated, particularly in the context of attentional behaviors. This suggests that interplay between the autonomic nervous system and aspects of the central nervous system subserving attention may be disrupted in these conditions. Better understanding these interactions and their relationship with individual variation in attentional behaviors could facilitate development of mechanistic biomarkers. We identified brain regions defined by trait-sensitive central-autonomic coupling as a first step in this process. As spontaneous neural activity measured during the resting state is sensitive to phenotypic variability, unconfounded by task performance, we examined whether spontaneous fluctuations in brain activity and an autonomic measure, pupil diameter, were coupled during the resting state, and whether that coupling predicted individual differences in attentional behavior. By employing concurrent pupillometry and fMRI during the resting state, we observed positive coupling in regions comprising cingulo-opercular, default mode, and fronto-parietal networks, as well as negative coupling with visual and sensorimotor regions. Individuals less prone to distractibility in everyday behavior demonstrated stronger positive coupling in cingulo-opercular regions often associated with sympathetic activity. Overall, our results suggest that individuals less prone to distractibility have tighter intrinsic coordination between specific brain areas and autonomic systems, which may enable adaptive autonomic shifts in response to salient environmental cues. These results suggest that incorporating autonomic indices in resting-state studies should be useful in the search for biomarkers for neurological and psychiatric disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.