Abstract

Little is known about the internal circuitry of the primate lateral intraparietal area (LIP). During two versions of a delayed-saccade task, we found radically different network dynamics beneath similar population average firing patterns. When neurons are not influenced by stimuli outside their receptive fields (RFs), dynamics of the high-dimensional LIP network during slowly varying activity lie predominantly in one multi-neuronal dimension, as described previously. However, when activity is suppressed by stimuli outside the RF, slow LIP dynamics markedly deviate from a single dimension. The conflicting results can be reconciled if two LIP local networks, each underlying an RF location and dominated by a single multi-neuronal activity pattern, are suppressively coupled to each other. These results demonstrate the low dimensionality of slow LIP local dynamics, and suggest that LIP local networks encoding the attentional and movement priority of competing visual locations actively suppress one another.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.