Abstract

The aim of this paper is to study a conservative wave equation coupled to a diffusion equation. This coupled system naturally arises in musical acoustics when viscous and thermal effects at the wall of the duct of a wind instrument are taken into account. The resulting equation, known as the Webster–Lokshin model, has variable coefficients in space, and a fractional derivative in time. This equation can be recast into the port Hamiltonian framework by using the diffusive representation of the fractional derivative in time and a multiscale state space representation. The port-Hamiltonian formalism proves adequate to reformulate this coupled system, and could enable another well-posedness analysis, using classical results from port-Hamiltonian systems theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.