Abstract

Since the development of anionic group theory, the spatial arrangement of anionic groups in optical crystals has been believed to determine their functional, such as nonlinear optical, properties. At the same time, cation substitution, resulting in either the appearance of disordered cation sites in a crystal structure or the emergence of cation-ordered superstructures, has been widely used to control material properties. This work demonstrates the coupling between positional cation disorder and orientational disorder of (CO3)2− anions in the β modification of the recently described K2Ca3(CO3)4 material. In contrast to the α modification [P212121, a = 7.39134 (18), b = 8.8153 (2), c = 16.4803 (4) Å], where the ordered cation sublattice favors the non-centrosymmetric orientationally ordered arrangement of (CO3)2− anionic groups, positional cation disorder in β-K2Ca3(CO3)4 [Pnma, a = 7.5371 (2), b = 16.1777 (5), c = 8.7793 (3) Å] within the cation sublattice of the same topology leads to orientational disorder of (CO3)2− groups and the appearance of an inversion center in the average structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call