Abstract
The development of laser-assisted atom probes makes it possible, in principle, to exploit the femtosecond laser pulse not only for triggering ion evaporation from a nanometric field emission tip, but also for generating photons via the radiative recombination of electron-hole pairs in tips made of dielectric materials. In this article we demonstrate a first step towards a correlation of micro-photoluminescence (μ-PL) and laser-assisted tomographic atom probe (LA-TAP) analysis applied separately on the same objects, namely on ZnO microwires. In particular, we assess that the use of the focused ion beam (FIB) tip preparation method significantly degrades the radiative recombination yield of the analyzed microwires. We discuss the strategies to avoid the FIB-induced damage on the optical properties of the sample and how to get beyond the correlated μ-PL and LA-TAP analysis with a coupled approach allowing to perform the two analyses within the same instrument.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.