Abstract

We analyse a system of two interacting spin-qubits subjected to a Landau-Majorana-St\"uckelberg-Zener (LMSZ) ramp. We prove that LMSZ transitions of the two spin-qubits are possible without an external transverse static field since its role is played by the coupling between the spin-qubits. We show how such a physical effect could be exploited to estimate the strength of the interaction between the two spin-qubits and to generate entangled states of the system by appropriately setting the slope of the ramp. Moreover, the study of effects of the coupling parameters on the time-behaviour of the entanglement is reported. Finally, our symmetry-based approach allows us to discuss also effects stemming from the presence of a classical noise or non-Hermitian dephasing terms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call