Abstract

The incorporation of the spatial heterogeneity of real landscapes into population dynamics remains extremely difficult. We propose combining equation-based modelling (EBM) and agent-based modelling (ABM) to overcome the difficulties classically encountered. ABM facilitates the description of entities that act according to specific rules evolving on various scales. However, a large number of entities may lead to computational difficulties (e.g., for populations of small mammals, such as voles, that can exceed millions of individuals). Here, EBM handles age-structured population growth, and ABM represents the spreading of voles on large scales. Simulations applied to the spreading of a montane water vole population demonstrated that our model is quite efficient in representing the pattern observed and might help to highlight some key parameters during population expansion. This method paves the way for further developments, including the introduction of density-dependent parameters (predation, diseases, etc.) capable of triggering population declines in an explicitly spatial context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.