Abstract

We present a theoretical proposal to couple a single Nitrogen-Vacancy (NV) center to a superconducting flux qubit (FQ) in the regime where both systems are off resonance. The coupling between both quantum devices is achieved through the strong driving of the flux qubit by a classical microwave field that creates dressed states with an experimentally controlled characteristic frequency. We discuss several applications such as controlling the NV center's state by manipulation of the flux qubit, performing the NV center full tomography and using the NV center as a quantum memory. The effect of decoherence and its consequences to the proposed applications are also analyzed. Our results provide a theoretical framework describing a promising hybrid system for quantum information processing, which combines the advantages of fast manipulation and long coherence times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.