Abstract

Lithium metal has been considered as the most promising anode material for high energy density batteries owing to its high theoretical capacity and low reduction potential. Unfortunately, the uncontrollable growth of lithium dendrites and unrestrained volume expansion seriously hinder its practical applications. Designing 3D skeletons with high electronic conductivity, and superior lithophilicity to control the lithium plating/stripping process has been proven to be an effective strategy to alleviate these two issues. In this study, ZnO-decorated 3D vertical graphene skeleton (ZnO@VG) was developed as the host material to regulate lithium nucleation and dendrite growth. Attributing to the unique cavity arrangement, enlarged specific surface area, and numerous lithiophilic sites of ZnO@VG, a remarkable coulombic efficiency of 99.12 % after 350 cycles is achieved. Furthermore, symmetric cells based on ZnO@VG/Li electrodes demonstrate lower voltage polarization and enhanced cycling stability (over 1800 h) at 0.5 mA cm−2 and 1 mA h cm−2. Notably, when coupled with a LiFePO4 cathode, the full cell exhibits a discharge specific capacity of 100.33 mA h cm−2 at 5 C and maintains a high capacity retention of 89.1 % after 740 cycles at 1 C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.