Abstract

The coupled-mode theory (CMT) for optical waveguides is reviewed, with emphasis on the analysis of coupled optical waveguides. A brief account of the recent development of the CMT for coupled optical waveguides is given. Issues raised in the debates of the 1980’s on the merits and shortcomings of the conventional as well as the improved coupled-mode formulations are discussed. The conventional coupled-mode formulations are set up in a simple, intuitive way. The rigorous CMT is established on the basis of a linear superposition of the modes for individual waveguides. The cross-power terms appear logically as a result of modal nonorthogonality. The cross power is necessary for the self-consistency of the CMT for dissimilar waveguides. The nonorthogonal CMT, though more complicated, yields more-accurate results than the conventional orthogonal CMT for most practical applications. It also leads to the prediction of cross talk in directional couplers. The conventional orthogonal CMT is, however, reliably accurate for describing the power coupling between two weakly coupled, nearly identical waveguides. For dissimilar waveguides, a self-consistent orthogonal CMT can be derived by a redefinition of the coupling coefficients, and it predicts the coupling length and therefore the power exchange between the waveguides accurately if the two waveguides are far apart. Three typical coupler configurations—the uniform, the grating-assisted, and the tapered—are examined in detail. The accuracy, scope of validity, limitations, and extensions of the coupled-mode formulations are discussed in conjunction with each configuration. To verify the arguments in the discussions, comparisons with the exact analytical solutions and the rigorous numerical simulations are made.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.