Abstract

We demonstrate an approach for the realization of coupled-mode induced transparency (CMIT) in a hybrid polydimethylsiloxane (PDMS)-coated silica microbubble resonator, with an Au microwire inserted in the hollow channel. Owing to the large negative thermo-optics coefficient of PDMS, different radial order modes with opposite thermal sensitivities can coexist in this hybrid microcavity. By applying a current through the Au microwire, which acts as a microheater, the generated Ohmic heating could thermally tune the resonance frequencies and the frequency detuning of the coupled mode to achieve controllable CMIT. This platform offers an efficient and convenient way to obtain controllable CMIT for applications, such as label-free biosensing and quantum information processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.