Abstract

AbstractA coupled‐cluster (CC) response functions theory for molecular solutes described with the framework of the polarizable continuum model (PCM) is presented. The theory is an extension to the dynamical molecular properties of the PCM‐CC analytic derivatives recently proposed for the calculation of static molecular properties (Cammi, Jr Chem Phys 2009, 131, 164104). The theory is presented for linear and quadratic response functions, and the operative expressions of these response functions can accurately account for the nonequilibrium solvation effects. The excitation energies and transition moments of the solvated chromophores have been determined from the linear response functions. Accurate expressions for gradients of excitation energies for the evaluation of the excited state properties have been also discussed. © 2012 Wiley Periodicals, Inc. Int J Quantum Chem, 2012

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.