Abstract

This work presents the use of longitudinal refractive index modulation (apodization) in photosensitive glass for improved sidelobe suppression in volume holographic optical elements. We develop a numerical model for both uniform and apodized volume holograms based on rigorous coupled-wave analysis. We validate the model by comparison with a transmissive 1.55- mum uniform volume grating in photothermorefractive glass. We then apply our numerical model to calculate the spectral response of apodized gratings. The numerical results demonstrate that apodization of the refractive index modulation envelope improves spectral selectivity and reduces first and second-order side-lobe peaks by up to 33 and 65 dB, respectively. We suggest a method for creating apodization in volume holograms with approximately Gaussian spatial refractive index profile.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.