Abstract
We investigate differential geometric aspects of moduli spaces parametrizing solutions of coupled vortex equations over a compact Kähler manifold X. These solutions are known to be related to polystable triples via a Kobayashi–Hitchin type correspondence. Using a characterization of infinitesimal deformations in terms of the cohomology of a certain elliptic double complex, we construct a Hermitian structure on these moduli spaces. This Hermitian structure is proved to be Kähler. The proof involves establishing a fiber integral formula for the Hermitian form. We compute the curvature tensor of this Kähler form. When X is a Riemann surface, the holomorphic bisectional curvature turns out to be semi-positive. It is shown that in the case where X is a smooth complex projective variety, the Kähler form is the Chern form of a Quillen metric on a certain determinant line bundle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.