Abstract

A coupled vibration model of hot rolling mill rolls under multiple nonlinear effects is established by considering the nonlinear spring force produced by the hydraulic cylinder, the nonlinear friction between the work rolls, the dynamic variation of rolling force, and the effect of external excitation as well as according to the structural constraints of a four-high hot rolling mill in the vertical and horizontal directions. The amplitude-frequency response equation of rolling mill rolls is determined by using a multiple-scale approximation method. Furthermore, use of actual data for simulation indicates that the internal resonance is the main cause of coupling vibration of the rolling mill rolls. In addition, changes in the movement displacement of the hydraulic cylinder and the coupling parameters strongly affect the coupling system of the rolling mill rolls. Finally, the study of the dynamic bifurcation characteristics of the rolling mill rolls indicates that, with varying external excitation amplitude, the vibration of rolls alternates between periodic motion, period-doubling motion, and chaotic motion in both vertical and horizontal directions. This is one of the reasons for the appearance of periodic light and dark stripes on the strip surface. Furthermore, the range of the external excitation amplitude (F0) at which the rolling mill roll system vibrates violently, that is, 5.68e5 N < F0 < 5.84e5 N and F0 > 6.12e5 N, must be avoided. The research results can provide a theoretical reference for further exploration of the coupling vibration mechanism of hot rolling mills.

Highlights

  • Research ArticleCoupled Vibration Behavior of Hot Rolling Mill Rolls under Multinonlinear Effects. Received 18 January 2020; Revised 7 May 2020; Accepted 25 May 2020; Published 10 June 2020

  • Hot rolling is an important process in the manufacturing and processing of steel strips

  • According to the structure diagram of the four-high hot rolling mill shown in Figure 1, we consider the structural constraints on the roll and the effect of dynamic rolling force, the nonlinear spring force exerted by the hydraulic cylinder in the vertical direction, and the friction force change caused by the rolling speed fluctuation in the horizontal direction. en, the mass concentration method is adopted, wherein the upper backup and work rolls are equivalent to a mass block, while the lower backup and work rolls are equivalent to a mass block

Read more

Summary

Research Article

Coupled Vibration Behavior of Hot Rolling Mill Rolls under Multinonlinear Effects. Received 18 January 2020; Revised 7 May 2020; Accepted 25 May 2020; Published 10 June 2020. A coupled vibration model of hot rolling mill rolls under multiple nonlinear effects is established by considering the nonlinear spring force produced by the hydraulic cylinder, the nonlinear friction between the work rolls, the dynamic variation of rolling force, and the effect of external excitation as well as according to the structural constraints of a four-high hot rolling mill in the vertical and horizontal directions. The study of the dynamic bifurcation characteristics of the rolling mill rolls indicates that, with varying external excitation amplitude, the vibration of rolls alternates between periodic motion, period-doubling motion, and chaotic motion in both vertical and horizontal directions. The range of the external excitation amplitude (F0) at which the rolling mill roll system vibrates violently, that is, 5.68e5 N < F0 < 5.84e5 N and F0 > 6.12e5 N, must be avoided. The range of the external excitation amplitude (F0) at which the rolling mill roll system vibrates violently, that is, 5.68e5 N < F0 < 5.84e5 N and F0 > 6.12e5 N, must be avoided. e research results can provide a theoretical reference for further exploration of the coupling vibration mechanism of hot rolling mills

Introduction
Horizontal direction a Vertical direction b
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.