Abstract
This paper introduces a three dimensional finite element (3D-FE) method based on a coupled vector-scalar potential formulation. The method is most suited for large-scale magnetostatic field applications containing mixed media (conductors-iron), due to substantial savings in computational storage and CPU time. The method allows one to calculate the magnetic field intensity in the current-carrying regions using a reduced curl-curl formulation based on a second order hexahedral type FE. The resulting reduced field intensity is used to develop forcing functions for a global magnetic scalar potential solution over the entire volume of the problem based on a first order hexahedral type FE. The analysis developed is applied to an illustrative shell-type transformer for verification purposes of the numerical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.