Abstract

Recent high-resolution absorption spectroscopy on highly excited excitons in cuprous oxide (Kazimierczuk et al 2014 Nature 514 343–347) have revealed significant deviations of their spectrum from the ideal hydrogen-like series. In atomic physics, the influence of the ionic core and the resulting modifications of the Coulomb interaction are accounted for by the introduction of a quantum defect. Here we translate this concept to the realm of semiconductor physics and show how the complex band dispersion of a crystal is mirrored in a set of empirical parameters similar to the quantum defect in atoms. Experimental data collected from high-resolution absorption spectroscopy in electric fields allow us to compare results for multiple angular momentum states of the yellow and even the green exciton series of . The agreement between theory and experiment validates our assignment of the quantum defect to the nonparabolicity of the band dispersion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call