Abstract

Three coupled two-dimensional viscoelastic creep models for orthotropic material are analyzed. The models of different complexity are mathematically formulated and implemented in a finite element software. Required viscoelastic material parameters are determined by calibration procedure, where numerical results are compared against experimentally obtained viscoelastic strains caused by tensile or shear loading. Finally, a comparison method is used to evaluate the accuracy of strain predictions of each particular model. The analysis shows that all the models are able to accurately predict viscoelastic creep simultaneously in two perpendicular directions for various periods of time and wood species. Calculated numerical values of the viscoelastic material parameters suitable for the three models and wood species, i.e., Douglas fir (Pseudotsuga menziesii), Norway spruce (Picea abies), Japanese cypress (Chamaecyparis obtusa), and European beech (Fagus sylvatica L.), under constant tensile loading are also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.