Abstract

Mine backfilling is a process whereby mine tailings mixed with small amounts of cement are placed hydraulically into mined-out voids (“stopes”) to stabilize the rockmass and allow full extraction of adjacent ore. A containment barricade is constructed to block the access point at the base of the stope, the design of which requires calculation of the total stress on the barricade during and following filling. For fine-grained backfill containing cement, the rate of development of stresses is governed by the rates of filling, consolidation, and cement hydration, each with its own timescale. As “consolidation” in backfill undergoing hydration can be dominated by “self-desiccation”, this mechanism must also be incorporated. Interaction between the backfill and the stope walls (“arching”) also has an influence. The paper describes a finite element (FE) model (“Minefill-2D”) that can model these interactions, although only in a two-dimensional (plane–strain or axisymmetric) fashion. It is shown that arching significantly influences the total stress distribution in a typical stope during filling, but only if and when effective stress develops. For cemented backfill, arching sometimes does not fully mobilize the cement bond strength, so that assessment of arching using traditional limit equilibrium methods is often not appropriate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.