Abstract

We report fully coupled quantum five-dimensional calculations of the translation-rotation (T-R) energy levels of one H(2), HD, and D(2) molecule confined inside the large hexakaidecahedral (5(12)6(4)) cage of the structure II clathrate hydrate. Highly converged T-R eigenstates have been obtained for excitation energies beyond the j = 2 rotational levels of the guest molecules, in order to allow comparison with the recent Raman spectroscopic measurements. The translationally excited T-R states are assigned with the quantum numbers n and l of the 3D isotropic harmonic oscillator. However, the translational excitations are not harmonic, since the level energies depend not only on n but also on l. For l > 1, the T-R levels having the same n,l values are split into groups of almost degenerate levels. The splitting patterns follow the predictions of group theory for the environment of T(d) symmetry, which is created by the configuration of the oxygen atoms of the large cage. The 2j + 1 degeneracy of the j = 1 and 2 rotational levels of the encapsulated hydrogen molecule is lifted entirely by the angular anisotropy of the H(2)-cage interaction potential. The patterns and magnitudes of the j = 1, 2 rotational level splittings, and the energies of the sublevels, in the large cage are virtually identical with those calculated for the small cage. This is in agreement with, and sheds light on, the observation that the S(0)(0) (j = 0-->2) bands in the rotational Raman spectra measured for simple H(2) hydrate and the binary hydrate of H(2) with tetrahydrofuran are remarkably similar with respect to their frequencies, widths, shapes, and internal structure, when the H(2) occupancy of the large cage of simple H(2) hydrate is low.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.