Abstract

Abstract Understanding the instability phenomena of rotor-shaft and driveline systems incorporating universal joints is becoming increasingly important because of the trend towards light-weight, high-speed supercritical designs. A non-dimensional, periodic, linear time-varying model with torsional and lateral degrees-of-freedom is developed for a rotor shaft-disk assembly supported on a flexible bearing and driven through a U-Joint and stability is investigated with Floquet Theory. It is shown that the interaction between torsional and lateral dynamics results in new regions of parametric instability that have not been addressed in previous investigations. The presence of load inertia and misalignment causes dynamic coupling of the torsion and lateral modes, which can result in torsion-lateral instability for shaft speeds near the sum-type combinations of the torsion and lateral natural frequencies. The effect of angular misalignment, static load-torque, load-inertia, lateral frequency-split, and auxiliary damping on the stability of the system is studied over a range of shaft operating speeds. Also, the effectiveness of auxiliary lateral viscous damping as a means of stabilizing the system is investigated. Finally, a closed-form technique based on perturbation expansions is derived to determine the auxiliary damping necessary to stabilize the system for the least stable case (worst case).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.