Abstract
A novel numerical approach to calculate the time evolution of the three dimensional distribution of the magnetic field and forces in the end winding regions of large turbine generators is presented. The proposed approach is based on an integral formulation for nonlinear magnetostatic problems. Its main advantage is the reduction of the discretization to only the conductors and magnetic materials. In this paper the solution of a coupled magnetostructural problem consisting in the calculation of the mechanical stresses and deformations caused by the electrodynamic forces is presented. The analysis is based on a time stepping simulation where the currents are derived from the integration of a lumped parameter model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.