Abstract

Abstract The Yucca Mountain Drift Scale Test (DST) is a multiyear, large-scale underground heating test designed to study coupled thermal–hydrological–mechanical–chemical behavior in unsaturated fractured and welded tuff. As part of the international cooperative code-comparison project DEvelopment of COupled models and their VALidation against EXperiments, four research teams used four different numerical models to simulate and predict coupled thermal–hydrological–mechanical (THM) processes at the DST. The simulated processes included heat transfer, liquid and vapor water movements, rock-mass stress and displacement, and stress-induced changes in fracture permeability. Model predictions were evaluated by comparison to measurements of temperature, water saturation, displacement, and air permeability. The generally good agreement between simulated and measured THM data shows that adopted continuum model approaches are adequate for simulating relevant coupled THM processes at the DST. Moreover, thermal-mechanically induced rock-mass deformations were reasonably well predicted using elastic models, although some individual displacements appeared to be better captured using an elasto-plastic model. It is concluded that fracture closure/opening caused by change in normal stress across fractures is the dominant mechanism for thermal-stress-induced changes in intrinsic fracture permeability at the DST, whereas fracture shear dilation appears to be less significant. This indicates that such changes in intrinsic permeability at the DST, which are within one order of magnitude, are likely to be mostly reversible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.