Abstract

We study coupled systems of nonlinear wave equations from the point of view of their formal Darboux integrability. By making use of Vessiot's geometric theory of differential equations, it is possible to associate to each system of nonlinear wave equations a module of vector fields on the second-order jet bundle — the Vessiot distribution. By imposing certain conditions of the structure of the Vessiot distributions, we identify the so-called separable Vessiot distributions. By expressing the separable Vessiot distributions in a basis of singular vector fields, we show that there are, at most, 27 equivalence classes of such distributions. Of these, 14 classes are associated with Darboux integrable nonlinear systems. We take one of these Darboux integrable classes and show that it is in correspondence with the class of six-dimensional simply transitive Lie algebras. Finally, this later result is used to reduce the problem of constructing exact general solutions of the nonlinear wave equations understudy to the integration of Lie systems. These systems were first discovered by Sophus Lie as the most general class of ordinary differential equations which admit nonlinear superposition principles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call