Abstract

We study the geometric qualitative behavior of a class of discontinuous vector fields in four dimensions. Explicit existence conditions of one-parameter families of periodic orbits for models involving two coupled relay systems are given. We derive existence conditions of one-parameter families of periodic solutions of systems of two second order non-smooth differential equations. We also study the persistence of such periodic orbits in the case of analytic perturbations of our relay systems. These results can be seen as analogous to the Lyapunov Centre Theorem. Nous étudions le comportement géométrique qualitatif dʼune classe de champs de vecteurs discontinus en dimension quatre. Nous donnons des conditions explicites dʼexistence de familles à un paramètre dʼorbites périodiques pour des modèles comportant deux systèmes relais couplés. Nous en déduisons des conditions dʼexistence de familles à un paramètre de solutions périodiques pour des systèmes de deux équations différentielles discontinues du second ordre. Nous étudions également la persistence des ces orbites périodiques lors de perturbations analytiques de nos systèmes relais. Ces résultats sʼapparentent au Théorème du Centre de Lyapunov.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.