Abstract

Analyses and simulations of the coupled surge-and-heave motions of a nonlinear, moored, experimental, submerged structure subjected to random waves are presented here. The random wave excitations examined include periodic waves with additive noise and narrow-band random waves. Characteristic experimental results include noisy subharmonic and superharmonic responses, and transition behaviors among multiple coexisting responses. This investigation applies a systematic, stochastic analysis procedure to further the deterministic study presented in Part I. Good agreement between the analytical predictions and experimental results is shown. Effects of random perturbations in waves on nonlinear response phenomena are examined, especially for the cases of multiple responses coexisting with chaos. It is found that chaotic responses are sensitive and of weak strength compared to other coexisting responses, and the system response trajectories mainly stay in the stronger, periodic attracting domains. Numerical results indicate perturbation-induced response transitions leading to very large-amplitude response beyond the experimental model limitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.