Abstract

Abstract Resonant optical cavities are essential components in mid-infrared applications. However, typical film-type cavities require multilayer stacks with a micron-thick spacer due to mid-infrared wavelengths, and their performance is limited by narrow frequency tunability and angular sensitivity. We propose and experimentally demonstrate the subwavelength-scale (≈λ 0/150) resonant nanocavity arrays that enhance the absorption spectrum of the device in the mid-infrared (10–12 microns) via excitation of coupled surface plasmon–phonon polaritons. The proposed metal–insulator–polar dielectric (gold–silicon–silicon carbide) structure supports a guided mode of the coupled surface polaritons in the lateral direction while vertically confining the mid-infrared wave within the 80 nm thick dielectric spacer. In particular, the subwavelength-scale (≈λ 0/10) gratings are imposed to form Fabry–Pérot cavity arrays displaying angle-insensitive and frequency-tunable absorption of up to 80% of the optical power in the mid-infrared. Our work should benefit diverse mid-infrared applications and novel designs of polariton-based photonic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call