Abstract

Plasmonic nanostructures exhibit a variety of surface plasmon polariton (SPP) modes, with different characteristic properties. While a single metal dielectric interface supports a single-interface SPP mode, a thin metal film can support extended long range SPPs and strongly confined short range SPPs. When the coupling between the incident light and the SPP is provided through a diffraction grating, it is possible to azimuthally rotate the grating with respect to the scattering plane, introducing the possibility to propagate the SPP along an arbitrary direction. We present a theoretical and experimental analysis of the coupling conditions for long range and short range SPPs under this configuration. We also investigate the propagation length of the modes depending on the propagation direction with respect to the grating grooves, showing in particular that the long range SPP propagation length can be sensibly enhanced with respect to the null-azimuth case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call